
Quick user guide for a MatLab implementation

of DSA-BD

Camilo Ortiz

September 20, 2011

1 Introduction

This document is a quick reference for a MATLAB package developed by C. Or-
tiz, R.D.C. Monteiro and B.F. Svaiter for solving general semidefinite programs
(SDPs) using a block-decomposition first-order method, which is a special case
of the hybrid proximal extragradient (HPE) method, a framework of inexact
proximal point methods introduced by B.F. Svaiter and M. Solodov in [2, 3].
The details of the algorithm used by DSA-BD can be found in [1].

The primal and dual problems of interest are

min{〈c, x〉|Ax = b , x #K 0}, max{〈b, y〉|AT y + z = c , z #K 0}, (1)

where A : Rnu × Rnl × Sns → Rm is linear, c = (cu, cl, Cs) ∈ Rnu × Rnl × Sns ,
b ∈ Rm and K = Rnu × R

nl

+ × Sns

+ .
The basic description of DSA-BD is given in Algorithm 4 in [1]:

1

Algorithm 1 : Scaled adaptive block-decomposition (SA-BD) method for solv-
ing (1) .

0) Let x0 ∈ X , y0 ∈ Y, 0 < σ ≤ 1 and θ > 0 be given, and set k = 1 and

λ̃x =
σ
√

θ

‖U−1/2A‖
, λ̃y =

σ

‖U−1/2A‖
√

θ
; (2)

1) compute

ỹk = yk−1−λ̃y(Axk−1−b), x̃k = ΠK

[

xk−1−λ̃x

(

c −A∗U−1ỹk

)

]

; (3)

2) define

ṽk =

(

(xk−1 − x̃k)/λ̃y

Ax̃k − b

)

, (4)

choose λk to be the largest λ > 0 such that
∥

∥

∥

∥

λṽk +

(

x̃k

ỹk

)

−
(

xk−1

yk−1

)
∥

∥

∥

∥

[θ,U]

≤ σ

∥

∥

∥

∥

(

x̃k

ỹk

)

−
(

xk−1

yk−1

)
∥

∥

∥

∥

[θ,U]

; (5)

3) set
(

xk

yk

)

=

(

xk−1

yk−1

)

− λkṽk, (6)

and k ← k + 1, and go to step 1.

Several ingredients are introduced to speed-up the method in its pure form
such as: an aggressive choice of stepsize for performing the extragradient step;
use of scaled inner products in the primal and dual spaces; dynamic update of
the scaled inner product in the primal space for properly balancing the primal
and dual relative residuals, and; proper choices of the initial primal and dual
iterates, as well as the initial parameter for the primal scaled inner product.
The subroutines for most of the algebraic operations (SDV, matrix-vector mul-
tiplication) use a LAPACK implementation coded in C, using the SDP data
structure implemented in [4] and [5]. We describe how to use each of the in-
gredients in this implementation by explaining in detail each component of the
main routine in the following section.

2 Main routine

The main routine DSA_BD.m has the following calling syntax:

[obj,X,y,Z,runhist]=DSA_BD(blk,At,C,b,par,X0,y0,Z0) (7)

2

2.1 Output

obj(1): value of the primal objective function 〈c, x〉 at the last iteration of DSA-
BD.

obj(2): value of the dual objective function 〈b, y〉 at the last iteration of DSA-BD.

X: value of the primal variable, x, at the last iteration of DSA-BD.

y: value of the dual variable, y, at the last iteration of DSA-BD.

Z: value of the slack variable, z, in the dual problem at the last iteration of
DSA-BD.

runhist: structure containing information that measures the progress of the algo-
rithm:

runhist.pobj: array with the value of the primal objective function at each iteration.

runhist.dobj: array with the value of the dual objective function at each iteration.

runhist.pfeas: array with the primal relative residual (infeasibility) at each iteration:

εP = ‖b−Ax‖
1+‖b‖ .

runhist.dfeas: array with the dual relative residual (infeasibility) at each iteration:

εD = ‖A∗y+z−c‖
1+‖c‖ .

runhist.cputime: array with the time taken to perform each iteration.

runhist.epsilon: array with the value of 〈x, z〉 at each iteration.

runhist.lambdaratio: array with the value of λk/λ̃y at each iteration.

runhist.plambda: array with the value of θ−1 =
√

λ̃y/λ̃x at each iteration.

2.2 Input

par: structure of the input problem as well as the modifications or speed-up
ingredients to be used by DSA-BD.

par.adaptivelambda: flag that specifies the use of the aggressive choice of stepsize for per-
forming the extragradient step:

∗ If par.adaptivelambda=0, then λk = λ̃y and step 2 is not per-
formed in Algorithm 1.

∗ If par.adaptivelambda=1, then λk is obtained as in step 2 in
Algorithm 1.

par.balancedinit: defines the initialization of θ, x0 and y0 in Algorithm 1:

∗ If par.balancedinit=0, then x0 and y0 are given by X0 and y0
in (7), respectively, and θ = 1.

∗ If par.balancedinit=1, then x0 = 0, y0 = argmin
∥

∥A∗U−1y − c
∥

∥

and θ = 1.

3

∗ If par.balancedinit=2, then x0 and y0 are given by X0 and y0
in (7), respectively, and θ > 0 is chosen such that εP , εD = O(1).

∗ If par.balancedinit=3, then x0 = 0, y0 = argmin
∥

∥A∗U−1y − c
∥

∥

and θ > 0 is chosen such that εP , εD = O(1).

par.dynamicscaling: flag that specifies the use of the dynamic scaling of the primal in-
ner product, θ, in Algorithm 1. If par.dynamicscaling=1, k̄ :=
par.dyn_scale_updateiteration, τ := par.scalecorrection and
γ := par.scaleratio, then, if θk denotes the dynamic value of θ at
the kth iteration of the algorithm, we use the rule for updating θk as
in equation (59) in Section 5 of [1]:

θk =

θk−1, k ,≡ 0 mod k̄ or γ−1 ≤ εP,k−1/εD,k−1 ≤ γ

θk−1 · τ, k ≡ 0 mod k̄ and εP,k−1/εD,k−1 > γ

θk−1/τ, k ≡ 0 mod k̄ and εD,k−1/εP,k−1 > γ

, ∀k ≥ 2.

(8)
The update rule in (8) requires k̄ ≥ 1 integer, and scalars γ > 1
and 0 < τ < 1. If the flag par.scalerelnorm is set to 1, then the
normalized residuals

ε̃P =
‖U−1/2(b −Ax)‖

1 + ‖b‖
, ε̃D =

‖A∗U−1y + z − c‖
1 + ‖c‖

are used instead of εP and εD, respectively, in (8).

par.maxit: maximum number of iterations.

par.normalize: defines the normalization used by the problem:

∗ If par.normalize=0, then U = I in Algorithm 1.

∗ If par.normalize=1, then U = I in Algorithm 1 and the input

Ã =
A

‖b‖ + 1
, b̃ =

b

‖b‖ + 1
and C̃ =

C

‖C‖

is used instead of A, b and C, respectively.

∗ If par.normalize=2,3, then U = AAT in Algorithm 1. par.normalize=3
exploits the sparsity of t AAT .

par.sigma: value of σ in Algorithm 1.

par.tol: value of the desired accuracy ε̄ > 0. The algorithm is stopped when-
ever max{εP , εD} < ε̄.

blk: defines the block structure of the SDP as in [4], allowing only one sparse
block for the positive definite part of the cone K, i.e, the part of the
variable in Sns

+ of (1) are stored in only one block.

At: stores the value of AT in (1).

C: stores the value of c in (1).

4

b: stores the value of b in (1).

X0: stores the value of x0 in Algorithm 1 if par.balancedinit=0.

y0: stores the value of y0 in Algorithm 1 if par.balancedinit=0.

Z0: stores the initial value of z in (1).

References

[1] Renato D. C. Monteiro, Camilo Ortiz, and Benar F. Svaiter. Implementa-
tion of a block-decomposition algorithm for solving large-scale conic semidef-
inite programming problems. Optimization-online preprint 3032, pages 1–32,
2011.

[2] M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient –
proximal point algorithm using the enlargement of a maximal monotone
operator. SetValued Analysis, 7(4):323–345, 1999.

[3] M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algo-
rithm. Journal of Convex Analysis, 6(1):59–70, 1999.

[4] K. C. Toh, M.J. Todd, and R. H. Tütüncü. Sdpt3 - a matlab software
package for semidefinite programming. Optimization Methods and Software,
11:545–581, 1999.

[5] Xin-Yuan Zhao, Defeng Sun, and Kim-Chuan Toh. A Newton-CG aug-
mented lagrangian method for semidefinite programming. SIAM Journal on
Optimization, 20(4):1737–1765, 2010.

5

